

Current Transducer LF 305-S/SP7

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

	ectri		.4.
_			1 -
	CULI	U.GII	

I _{PN}	Primary nominal curre	nt rms	250		Α
I _{PM}	Primary current, meas	uring range	0 ±	350	Α
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$\mathbf{R}_{\mathrm{M \ min}}$	$R_{\text{M max}}$	
	with ± 15 V	@ $\pm 250 A_{max}$	19	67	Ω
		@ ± 350 A _{max}	19	39	Ω
I _{SN}	Secondary nominal cu		125		mΑ
K _N	Conversion ratio		1:20	00	
V _C	Supply voltage (± 5 %)	± 15		V
I _C	Current consumption		16 + I	S	mΑ

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.5		%
$\mathbf{\epsilon}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity error	< 0.1		%
		Тур	Max	
I_{o}	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$		± 0.2	mA
I _{OM}	Magnetic offset current ¹⁾ $\textcircled{0}$ $I_P = 0$ and specified R_M ,			
	after an overload of 3 x I _{PN}		± 0.2	mA
I _{OT}	Temperature variation of I _o - 40°C + 85°C	± 0.2	± 0.5	mA
t _{ra}	Reaction time to 10 % of I _{PN}	< 500		ns
t ,	Response time ²⁾ to 90 % of I _{PN} step	< 1		μs
di/dt	di/dt accurately followed	> 100		A/µs
BW	Frequency bandwidth (- 3 dB)	DC	100	kHz

General data

T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	32	Ω
m	Mass	100	g
	Standards	EN 50155: 1995 3)	

Notes: 1) The result of the coercive force (Hc) of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- 3) Excepted testing according to IEC 61000-4-5.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $V_c = \pm 15 (\pm 5 \%) V$
- V_d = 3.6 kV
- Connection to secondary circuit via cable
- Not protected against an overload from the power supply.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- Single or three phases inverters
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- · Battery charger.

Application domain

• Traction.

Current Transducer LF 305-S/SP7

Isolation characteristics				
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	3.6	kV	
$\mathbf{\hat{V}}_{d}$	Impulse withstand voltage 1.2/50 µs	9	kV	
		Min		
dCp	Creepage distance	10.1	mm	
dCI	Clearance	10.1	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 305-S/SP7 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Vertical position

Recommended fastening torque

Horizontal position

Primary through-hole

Connection of secondary

± 0.5 mm

2 holes Ø 4.3 mm

2 M4 steel screws

2.9 Nm

4 holes Ø 4.3 mm

4 M4 steel screws

Recommended fastening torque 2.9 Nm

Ø 20 mm

via cable with 5 mm stripped, tinned leads

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.