

Current Transducer LF 1005-S/SP32

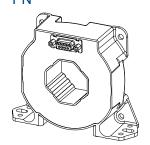
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Current consumption

ccuracy - Dynamic performance data

 $19 + I_{s}$

mΑ


트	Electrical data				
'N	Primary nominal	rms current	1000		Α
M	Primary current, measuring range		0 ±1200		Α
M	Measuring resista	ance	$R_{_{ m Mmin}}$	$R_{_{ m Mmax}}$	
	with ±15 V	@ ±1000 A _{max}	0	22	Ω
		@ ±1200 A max	0	11	Ω
N	Secondary nominal rms current		200		mA
N.	Conversion ratio		1:5000		
C.	Supply voltage (±	5 %)	±15		V

	curacy - Dynamic periormanice data			
$X_{\rm G}$	Overall accuracy @ $I_{\rm PN}$, $T_{\rm A}$ = 25 °C	±0.4		%
$\boldsymbol{\varepsilon}_{_{\!\scriptscriptstyle 1}}$	Linearity error	< 0.1		%
_		Тур	Max	
I_{\circ}	Offset current @ I_P = 0, T_A = 25 °C		±0.4	mΑ
$I_{\scriptscriptstyle extsf{O}T}$	Temperature variation of I_0 = -10 °C +70 °C	±0.2	±0.4	mΑ
t_r	Step response time to 90 $\%$ of I_{PN} 1)	< 1		μs
BW	Frequency bandwidth (-1 dB)	DC	150	kHz

G	General data			
T _A	Ambient operating temperature Ambient storage temperature	-10 +70 -25 +85	°C	
$T_{_{ m S}}$	Secondary resistance @ $T_A = 70 ^{\circ}$ C	46	Ω	
m	Mass Standard	500 EN 50178: 1997 UL 508: 2013	g	

Note: 1) For a $di/dt = 100 \text{ A/}\mu\text{s}$.

$I_{_{\mathrm{PN}}}$ = 1000 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $U_{\rm C} = \pm 15 \,\rm V$
- Connection to secondary circuit on SUB-D 9 P female.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Current Transducer LF 1005-S/SP32

Insulation coordination			
U_{d}	Rms voltage for AC insulation test, 50 Hz, 1 min	3 1)	kV
		6 ²⁾	kV
\hat{U}_{w}	Impulse withstand voltage 1.2/50 µs	8	kV
		Min	
$d_{_{\mathrm{Cp}}}$	Creepage distance	11.5	mm
$oldsymbol{d}_{Cp} \ oldsymbol{d}_{Cl}$	Clearance	11.5	mm
CTI	Comparative Tracking Index (group IIIa)	175	

Notes: 1) With a primary bar which fills the through-hole

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2

Non-uniform field		EN 50178	IEC 61010-1	
	$d_{Cp},d_{CI},\hat{U}_{W}$	Rated insulation voltage	Nominal voltage	
	Basic insulation	1000 V	1000 V	
	Reinforced insulation	500 V	500 V	

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

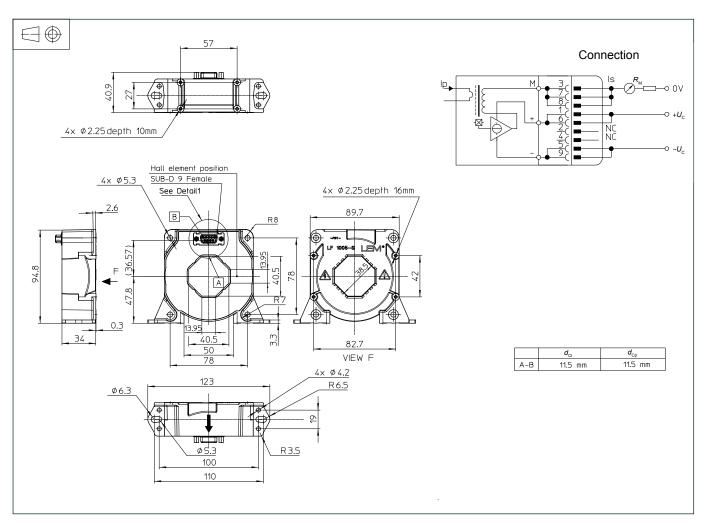
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

²⁾ With a rectangular bar (30 × 5 mm) placed horizontally in the through-hole, not in contact with the housing.

Dimensions LF 1005-S/SP32 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Vertical position

Recommended fastening torque

2 M5 steel screws Recommended fastening torque 4 N·m or 2.52 Lb. -Ft.

4 holes ø 4.2 mm or 4 M4 steel screws

Recommended fastening torque 3.2 N·m or 2.02 Lb. -

±0.5. mm

2 holes ø 6.3 mm

2 M6 steel screws

2 holes ø 5.3 mm

5 N·m or 3.69 Lb. - Ft.

4 holes ø 2.25 mm depth: 10 mm 4 × PTKA 30 screws

length: 10 mm

Recommended fastening torque 0.9 N·m or 0.57 Lb. -Ft.

Transducer fastening Horizontal position

4 holes ø 5.3 mm

Recommended fastening torque

4 M5 steel screws 4 N·m or 2.52 Lb. - Ft. 4 holes ø 2.25 mm

depth: 16 mm 4 × PTKA 30 screws length: 16 mm

Recommended fastening torque 1 N·m or 0.63 Lb. - Ft.

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- · Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation.**
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

Page 3/3